Cryptographic Key Generation Using Biometrics
- W. Stallings, Cryptography and Network Security: Principles and Practice, 5th edition, Prentice Hall, 2010.Google Scholar
- Soutar, C.; Roberge, A. and Vijaya Kumar, B.V.K., “Biometric Encryption using Image Processing”, SPIE, pp. 178–188, 1998.Google Scholar
- Bolle, R.M.; Connel, J.H. and Ratha, N.K., “Biometrics Perils and Patches”, Elsevier - Pattern Recognition 35, pp. 2727–2738, 2002.Google Scholar
- Teoh, Andrew B.J.; Goh, A. and Ngo, D.C.L., “Random MultispaceQuantisation as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs”, IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), pp. 1892–1901, 2006.Google Scholar
- Ratha, N.K.; Chikkerur, S.; Connell, J.H. and Bolle, R.M., “Generating Cancelable Fingerprint Templates”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), pp. 561–572, 2007.Google Scholar
- Tulyakov, S.; Farooq, F. and Govindaraju, V., “Symmetric Hash Functions for Fingerprint Minutiae”, International Workshop on Pattern Recognition for Crime Prevention, Security and Surveillance (ICAPR 2005), 3687, pp. 30–38, 2005.Google Scholar
- Ang, R.; Rei, S.N. and McAven, L., “Cancelable Key-Based Fingerprint Templates”, Information Security and Privacy: 10th Australasian Conference (ACISP 2005), pp. 242–252, 2005.Google Scholar
- Maiorana, E.; Campisi, P.; Fierrez, J. and Ortega-Garcia, J., “Cancelable Templates for Sequence Based Biometrics with Application to On-line Signature Recognition”, IEEE Transactions on Systems, 40(3), pp. 525–538, 2010.Google Scholar
- Nanni, L. and Lumini, A., “Cancelable Biometrics: Problems and Solutions for Improving Accuracy”, NovaPublisher - Biometrics: Methods, Applications and Analysis, chap-7, pp. 153–166, 2010.Google Scholar
- F Monrose, MK Reiter, Q Li, S Wetzel, “Cryptographic key generation from voice”, Proceedings of IEEE Symposium on Security and Privacy, pp. 202–213, 2011.Google Scholar
- H Feng, CC Wah, “Private Key generation from on-line hand written signatures”, Information Management & Computer Security, 10(4), pp. 159–164, 2002.Google Scholar
- B Chen, V Chandran, “Biometric Based Cryptographic Key Generation from Faces”, Proceedings of 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, pp. 394–401, 2007.Google Scholar
- A Jagadeesan, K Duraiswamy, “Secured Cryptographic Key Generationfrom Multimodal Biometrics: Feature Level Fusion of Fingerprint and Iris”, Int. Journalon Computer Sc. & Information Security, 7(2), pp. 28–37, 2010.Google Scholar
- A Jagadeesan, T Thillaikkarasi, K Duraiswamy, “Cryptographic KeyGeneration from Multiple Biometrics Modalities: Fusing Minutiae with Iris Feature”, Int. J. Comput. Appl. 2(6), pp. 16–26, 2010.Google Scholar
- C Rathgeb, A Uhl., “Context-based biometric key generation for Iris”, IET Computer Vision, 5(6), pp. 389–397, 2011.Google Scholar
- D. Milao Q. Tang, and W. Fu, “Fingerprint minutia extraction based on principal curves,” Pattern Recognition Letters, Vol. 28, Issue 16, pp. 2184–2189, 2009.Google Scholar
Cryptographic Key Generation Using Biometrics Software
Generate stable cryptographic keys from biometric data that is unstable in nature. The proposed framework differs from prior work in that user-dependent transforms are utilized to generate more compact and distinguishable features. Openssl generate key from pem. Thereby, a longer and more stable bitstream can be generated as the cryptographic key. Efficient Cryptographic Key Generation Using Fingerprint Ginu Thomas, K.Rahimunnisa, Sonima Parayil Abstract— T Biometrics are used for the high secure applications in cryptography. Cryptography is intended to ensure the secret and authenticity of a message. In this work, we use our DNA-based cryptographic key generation algorithm 9, which is briefly described below: 1) A private key is used to generate a permutation P of size n. The key-based. Aug 24, 2006 Cryptographic Key Generation from Biometric Data Using Lattice Mapping Abstract: Crypto-biometric systems are recently emerging as an effective process of key management to address the security weakness of conventional key release systems using pass-codes, tokens or pattern recognition based biometrics. The generation of cryptographic key from individual user’s biometric feature is a solution to this problem. In this approach, it is too hard for the attacker to guess the cryptographic key without the prior knowledge of the user’s biometrics. But the problem with biometrics is that compromise makes it unusable.
Free Key Generation Software
This work is related to the latter approach in CBS. Faststone capture key generator 8.9. In such a system, protecting the privacy of the biometric data is an important concern. Further, there is a need to generate different cryptographic keys from the same biometric template of a user. Cancellable transformation of biometric data prior to the key generation is known as a solution.